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The non-linear response of empty and #uid-"lled circular cylindrical shells to
harmonic excitations is investigated. Both modal and point excitations have been
considered. The model is suitable to study simply supported shells with and
without axial constraints. Donnell's non-linear shallow-shell theory is used. The
boundary conditions on radial displacement and the continuity of circumferential
displacement are exactly satis"ed. The radial de#ection of the shell is expanded by
using a basis of seven linear modes. The e!ect of internal quiescent, incompressible
and inviscid #uid is investigated. The equations of motion, obtained in Part I of this
study, are studied by using a code based on the collocation method. The validation
of the present model is obtained by comparison with other authoritative results.
The e!ect of the number of axisymmetric modes used in the expansion on the
response of the shell is investigated, clarifying questions open for a long time. The
results show the occurrence of travelling wave response in the proximity of the
resonance frequency, the fundamental role of the "rst and third axisymmetric
modes in the expansion of the radial de#ection with one longitudinal half-wave,
and limit cycle responses. Modes with two longitudinal half-waves are also
investigated.

( 1999 Academic Press
1. INTRODUCTION

The large-amplitude vibrations of circular cylindrical shells have interested many
researchers in the last 40 years, as a consequence of the wide applications of these
0022-460X/99/501103#22 $30.00/0 ( 1999 Academic Press
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elements in engineering. Even though the study of this problem has a long tradition,
several questions still await for complete clari"cation. In the past, some discussions
between leading authors have been published in the Journal of Sound and<ibration;
others have recently been published in the Journal of Fluids and Structures [1}3],
testifying that the topic still presents open questions.

A full literature review of work on the non-linear dynamics of shells in vacuo and
"lled with or surrounded by quiescent #uid is given by Amabili et al. [4] and will
not be repeated here. However, it is necessary to refer to some fundamental and
some recent contributions. Brie#y, it is possible to attribute to Evensen [5] and
Dowell and Ventres [6] the original idea of mode expansions of the #exural
displacement involving the linear mode considered, the companion mode and an
axisymmetric term; their intuition was supported by a few available experimental
results. The studies of Ginsberg [7] and Chen and Babcock [8] constitute
fundamental contributions to the study of the in#uence of the companion mode on
the non-linear forced response of circular cylindrical shells. Ginsberg [7] employed
an expansion involving ideally all the linear modes plus an axial displacement to
satisfy the non-linear boundary conditions. He found that the fundamental terms in
the expansion of the radial displacement are: the excited mode, the companion
mode, all the axisymmetric modes with an odd number of axial half-waves, plus the
modes with a circumferential wavenumber twice those being excited. Chen and
Babcock [8] used a sophisticated mode expansion, including boundary layer terms,
in order to satisfy the non-linear boundary conditions. Ganapathi and Varadan [9]
studied the free response by using the "nite-element method. Gonialves and Batista
[10] and Amabili et al. [4] studied the response of #uid-"lled shells. In particular,
Gonialves and Batista [10] neglected the companion mode participation, the
importance of which in the non-linear response was investigated by Amabili et al. [4].

Available studies show that a linear modal base is the simplest choice to
discretize the system. In particular, in order to reduce the number of degrees of
freedom (d.o.f.), it is important to use only the most signi"cant modes. Most of the
studies consider, in addition to the regular or &&driven'' asymmetric mode under
consideration and the corresponding companion mode, also some axisymmetric
modes. In fact, it has clearly been established that, for non-linear shell vibrations,
the deformation of the shell involves a signi"cant axisymmetric contraction of the
circumference. It has never been clari"ed how many axisymmetric terms are
necessary to obtain a good accuracy in the model. It is now believed [1, 2] that their
number is important in predicting the kind of softening behaviour that has been
observed in the experiments.

This is the second in a series of papers in which the non-linear dynamics of shells
is reconsidered. The raison d'e( tre of this new series of studies is that the problem is
reanalyzed (i) using a fuller and more appropriate modal basis and (ii) fully
satisfying continuity of circumferential displacement. The work presented in
reference [4] represents a seminal contribution in this direction, more fully
exploited in this current series of papers. A fuller discussion of the rationale for
these studies may be found in reference [2].

The non-linear forced vibrations of a simply supported, circular cylindrical shell
"lled with an incompressible and inviscid, quiescent and dense #uid are
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investigated. The equations of motion obtained in Part I of the present study [11]
are used. They have been obtained by using Donnell's non-linear shallow-shell
theory. The boundary conditions on radial displacement and the continuity of
circumferential displacement are exactly satis"ed, while axial constraints are
satis"ed on the average. Both modal excitations and point excitations are
considered.

The radial displacement of the shell is expanded by using a basis of seven linear
modes; in particular, three axisymmetric modes with an odd number of axial
half-waves are employed. The equations of motion obtained by Amabili et al. [11]
are suitable for the study of modes of up to two axial half-waves.

The equations of motion are studied by using a code based on the collocation
method. Numerical results are obtained for forced vibrations of empty and water-
"lled shells. In particular, results obtained with a di!erent number of axisymmetric
modes (with an odd number of axial half-waves) in the expansion of the radial
displacement are compared, in order to clarify de"nitively this e!ect on the
accuracy of the model. It is found that the resonant frequency is a function of the
amplitude of vibration, generally displaying a softening behaviour, when two or
more axisymmetric modes (with an odd number of axial half-waves) are employed.

2. EXTERNAL HARMONIC EXCITATION

In Part I of the present study [11], an external modal excitation f of unspeci"ed
physical origin was assumed, as follows:

f"f
n
cos (nh) sin (nx/¸) cos (ut), (1)

where n is the number of circumferential waves, ¸ the shell length, u the radian
frequency of the excitation, x the axial co-ordinate, h the angular co-ordinate, and
t the time. Although this was part of the formulation, in the numerical calculations
f
n
"0 was always used, where f

n
is the excitation amplitude, since Part I was

concerned with the stability of free motions of the shell subjected to internal #ow.
The Galerkin projection of the modal excitation f on the weighting functions z

s
,

s"1,2, 7, gives [11]

S f, z
s
T"G

n¸
2

f
1,n

cos (ut)

0

for s"1,

for sO1.
(2)

Therefore, the modal excitation gives a non-zero contribution only to the driven
mode. This kind of excitation is quite unrealistic. Practically, one has to deal with
one or more forces applied to the system. More realistic is the case of a harmonic
point excitation, modelling for instance the excitation by an electrodynamical
exciter (shaker); this could be suitable for comparison with experimental results.
The point excitation can be described by the following expression:

f"fJd(h!hJ )d(x!xJ ) cos(ut), (3)
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where d is the Dirac delta function, fJ the excitation amplitude, hJ and xJ the angular
and axial position of the point of application of the force, respectively; here, the
point excitation is located at hJ "0, xJ "¸/2. The Galerkin projection of the point
excitation f on the weighting functions z

s
, s"1,2, 7, gives

S f, z
s
T"G

fJ cos(ut)
0

for s"1, 5, 6, 7,
for s"2, 3, 4.

(4)

Setting fJ"f
1,n

n¸/2, the only di!erence between equation (2) and equation (4) is that
the point excitation directly drives also the axisymmetric modes.

3. SHELLS VIBRATING IN <AC;O: RESULTS AND DISCUSSION

All the numerical results have been obtained by using the software A;¹O [12]
for bifurcation and continuation of ordinary di!erential equations, based on
a collocation method. The periodical results obtained are reported, showing the
maximum or minimum amplitude of the generalized co-ordinates in the period.
The generalized co-ordinates are related to the basis of linear modes used in the
expansion of the radial displacement w as follows [11]: A

1,n
(t), "rst longitudinal

driven mode; B
1,n

(t), "rst longitudinal companion mode; A
2,n

(t), second
longitudinal driven mode; B

2,n
(t), second longitudinal companion mode; A

1,0
(t),

"rst axisymmetric mode; A
3,0

(t), third axisymmetric mode; A
5,0

(t), "fth
axisymmetric mode. The oscillation amplitude of these variables is normalized by
the shell thickness h for easy interpretation of the results.

The case analyzed here was studied by Chen and Babcock [8] and it relates to
a circular cylindrical shell in vacuum, simply supported at the ends (with zero axial
force N

x
), and having the following dimensions and properties: ¸"0)2 m,

R"0)1 m, h"0)247]10~3 m, E"71)02]109Pa, o"2796 kg/m3 and l"0)31;
the mode investigated is n"6 and m"1 and 2 (where m is the number of
longitudinal half-waves). Chen and Babcock [8] studied only the case with m"1.
It is interesting to note that, for symmetry reasons, the second longitudinal mode is
not coupled to the "rst one. Therefore, the model developed in Part I of the present
study [11] can be reduced to one of "ve d.o.f. by imposing A

2,n
(t)"B

2,n
(t)"0 for

m"1 and A
1,n

(t)"B
1,n

(t)"0 for m"2.
The response-frequency relationship (computed by using the 5 d.o.f. model) of the

driven mode without companion mode participation (B
1,n

(t)"0) for m"1, is
shown in Figure 1; the present results (continuous line) are compared with those
analytically obtained by Chen and Babcock [8] (dashed lines) and Amabili et al.
[4] (chain-dotted line) for an amplitude of the external modal excitation of
f
1,n

"0)0012h2ou2
1,n

and a damping ratio 2f
1,n

"0)001 (with f
1,0

"f
1,n

u
1,0

/u
1,n

and f
3,0

"f
1,n

u
3,0

/u
1,n

); the linear radian frequencies are u
1,n

"2n]564)2,
u

1,0
"2n]8021, u

3,0
"2n]8023 and u

5,0
"2n]8030 rad/s. The backbone

curves (pertaining to undamped free vibrations) are also shown in this "gure.
Figure 1 shows reasonably good agreement between the present results and those
obtained theoretically by Chen and Babcock [8] and Amabili et al. [4]. The same
case was also studied by Ganapathi and Varadan [9], only for free vibrations; they



Figure 1. Frequency-response curves and backbone curves for the driven mode without
companion mode participation, m"1:**, present results; ) } ) } ) , Amabili et al. [4]; } } }, Chen and
Babcock [8]; }L} the backbone curve of Ganapathi and Varadan [9].
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obtained a backbone curve, also shown in Figure 1, in reasonably good agreement
with the present results. The non-linearity is of the softening type in Figure 1.

Particularly interesting is the comparison between the present result, obtained
with a 5 d.o.f. model, and the curve of Amabili et al. [4], obtained with a 3 d.o.f
model (in this case a kinematic constraint between the "rst two axisymmetric
modes considered was used to reduce the d.o.f. to 3). The present model gives more
strongly softening results than that presented by Amabili et al. [4], as
a consequence of the removal of this arti"cial constraint and the introduction of
a "fth axisymmetric mode.

3.1. COMPARISON OF DIFFERENT MODELS

A question that is still open is the e!ect of the number of axisymmetric modes
that needs to be retained in the expansion of the #exural displacement on the
non-linear response of closed, circular shells. Generally, hardening-type results
were found in calculations in which only the "rst axisymmetric mode was retained,
e.g., by Atluri [13], who followed the model of Dowell and Ventres [6]. Varadan
et al. [14] showed that retaining only the "rst axisymmetric mode gives hardening-
type results, whereas the mode expansion of Evensen [5] gives softening-type
results for the same case. In particular, the axisymmetric term used by Evensen [5]
is not a true axisymmetric mode, but it is obtained by satisfying exactly the
continuity of the circumferential displacement; however, it does not satisfy the
moment-free boundary condition at the shell edges. Amabili et al. [4] obtained



Figure 2. Frequency-response curves for the driven mode without companion mode participation,
m"1:**, model with 3 axisymmetric modes; } } }, model 2 axisymmetric modes; ) }) } ), model with
1 axisymmetric mode.
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results in good agreement with other authoritative published results by using an
expansion involving the "rst and third axisymmetric modes joined by an arti"cial
kinematic constraint to reduce the number of d.o.f. to 3. They also introduced an
improved homogeneous solution vis-à-vis those used in the past, e.g., in references
[6, 13]. It is therefore of considerable interest to understand the reason for
obtaining such di!erent results with a one-axisymmetric-mode expansion [13], on
the one hand, and those of Evensen [5] and Amabili et al. [4], on the other.

In order to explain the e!ect of axisymmetric modes on the response of the shell,
Figure 2 shows the frequency-response relationship of the driven mode without
companion mode participation, computed with three axisymmetric modes
(continuous line), two axisymmetric modes (dashed line) and with only the "rst
axisymmetric mode (chain-dotted line). It is very interesting to observe that the
models with 2 and 3 axisymmetric modes give results very close to each other,
whereas the model with only the "rst axisymmetric mode gives a completely
di!erent result, showing the opposite trend of non-linearity. It should be noted that
the amplitude of the "rst axisymmetric mode is the same in the three models. This
result e!ectively explains the reason for the hardening-type results obtained by
Atluri [13] and Varadan et al. [14] with the model initially proposed by Dowell
and Ventres [6]: not only the "rst but also the third axisymmetric mode is evidently
fundamental for the adequate description of the non-linear response of closed,
circular shells. Further discussion is deferred to sections 3.2 and 3.3, where the
equations of motion and the response of all generalized co-ordinates are discussed.
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As a consequence of the closeness of the responses computed with 2 and
3 axisymmetric modes, it is reasonably believed that a further increase of the
number of axisymmetric modes (i.e., d.o.f.s.) to the present model does not give
a signi"cant change to the response of this system.

3.2. ACCURACY OF DIFFERENT MODELS FROM CONSIDERATION ON THE EQUATIONS
OF MOTION

The equations of motion have been obtained in Part I of this study [11]. It is
useful to rewrite these here in non-dimensional form, by introducing the following
parameters:

q"u
1,n

t, AI
1,n

(q)"A
1,n

(q)/h, BI
1,n

(q)"B
1,n

(q)/h,

AI
1,0

(q)"A
1,0

(q)/h, AI
3,0

(q)"A
3,0

(q)/h, AI
5,0

(q)"A
5,0

(q)/h.
(5)

The case of m"1 is now being studied so that it is possible to set A
2,n

(t)"
B
2,n

(t)"0. In particular, equations (46a, e}g) of Part I [11], related to the driven
and axisymmetric modes, can be transformed as follows:

AI G
1,n

(q)#2f
1,n

AIQ
1,n

(q)#AI
1,n

(q)#hJ
1
AI 3

1,n
(q)#hJ

1
AI

1,n
(q)BI 2

1,n
(q)

#hJ
5
AI

1,n
(q)AI

1,0
(q)#hJ

6
AI

1,n
(q)AI

3,0
(q)#hJ

7
AI

1,n
(q)AI

5,0
(q)#hJ

8
AI

1,n
(q)AI 2

1,0
(q)

#hJ
9
AI

1,n
(q)AI 2

3,0
(q)#hJ

10
AI

1,n
(q)AI 2

5,0
(q)#hJ

11
AI

1,n
(q)AI

1,0
(q)AI

3,0
(q)

#hJ
12

AI
1,n

(q)AI
3,0

(q)AI
5,0

(q)"[ f
1,n

/(h2ou2
1,n

)] cos (uq/u
1,n

), (6)

AI G
1,0

(q)#2f
1,0

u
1,0

AIQ
1,0

(q)#(u
1,0

/u
1,n

)2AI
1,0

(q)#lJ
1
AI

1,0
(q)AI 2

1,n
(q)

#lJ
1
AI

1,0
(q)BI 2

1,n
(q)#lJ

3
AI 2

1,n
(q)#lJ

3
BI 2
1,n

(q)#lJ
5
AI

3,0
(q)AI 2

1,n
(q)

#lJ
5
AI

3,0
(q)BI 2

1,n
(q)"0, (7)

AI G
3,0

(q)#2f
3,0

u
3,0

AIQ
3,0

(q)#(u
3,0

/u
1,n

)2AI
3,0

(q)#nJ
1
AI

3,0
(q)AI 2

1,n
(q)

#nJ
1
AI

3,0
(q)BI 2

1,n
(q)#nJ

3
AI 2

1,n
(q)#nJ

3
BJ 2

1,n
(q)#nJ

5
AI

1,0
(q)AI 2

1,n
(q)

#nJ
5
AI

1,0
(q)BI 2

1,n
(q)#nJ

7
AI

5,0
(q)AI 2

1,n
(q)#nJ

7
AI

5,0
(q)BI 2

1,n
(q)"0, (8)

AI G
5,0

(q)#2f
5,0

u
5,0

AIQ
5,0

(q)#(u
5,0

/u
1,n

)2AI
5,0

(q)#pJ
1
AI

5,0
(q)AI 2

1,n
(q)

#pJ
1
AI

5,0
(q)BI 2

1,n
(q)#pJ

3
AI 2

1,n
(q)#pJ

3
BI 2

1,n
(q)#pJ

6
AI

3,0
(q)AI 2

1,n
(q)

#pJ
6
AI

3,0
(q)BI 2

1,n
(q)"0, (9)

where hJ
i
for i"1,2, 12, lJ

i
for i"1,2, 5, nJ

i
for i"1,2, 7, and pJ

i
for i"1,2, 6,

are appropriate coe$cients. It is very interesting to note that the quadratic terms in
equation (6) involve products of AI

1,n
(q) only, multiplied by the generalized co-

ordinates associated with axisymmetric modes. These terms are essential for
determining the trend of non-linearity in the frequency-response relationship.

In order to understand fully the numerical results presented in Figure 2 and the
role of axisymmetric terms in the characterization of the type of non-linearity in the
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7 d.o.f. model, the equations of motion (6}9) are studied analytically by means of
a perturbation procedure described in detail in reference [4] for a simpler model.
For the sake of brevity, the analytical developments are skipped and only the
analytical expression of the non-linear, non-dimensional free oscillation frequency,
for single-mode response, is given here:

uL
1
"u

1
#ba2

1
#O(a3

1
), (10)

where u
1
"u

1,n
/u

1,n
"1, a

1
"DA

1,n
D/(2h) and

b"
1

4u
1
A6hJ

1
#

2hJ
5
lJ
3
(8u2

1
!3u2

5
)

!4u2
1
u2

5
#u4

5

!

4hJ
6
nJ
3

u2
6

#

2hJ
6
nJ
3

4u2
1
!u2

6

!

4hJ
7
pJ
3

u2
7

2hJ
7
pJ
3

4u2
1
!u2

7
B.
(11)

For the case under study, the coe$cients used in equations (6}9) are

hJ
1
"0)300378, hJ

5
"!15)3696, hJ

6
"3)4456, hJ

7
"0)692128,

lJ
3
"!3)84706, nJ

3
"0)8196, pJ

3
"0)131, u

5
"u

1,0
/u

1,n
"14)22,

u
6
"u

3,0
/u

1,n
"14)22, u

7
"u

5,0
/u

1,n
"14)23.

The sign of the coe$cient b given in equation (10) characterizes the type of
non-linearity: minus for softening, and plus for hardening non-linearity; the
absolute value quanti"es the e!ectiveness of the non-linearity itself. Equations (10)
and (11) can also be used in approaching the problem with fewer d.o.f.s. In
particular, reduced models are obtained by eliminating axisymmetric terms in the
equations of motion and by assuming some coe$cients to be equal to zero in
equation (11). In Table 1, values of the coe$cient b are evaluated for four di!erent
models: (i) no axisymmetric terms (n"0) are involved in the expansion, i.e., hJ

5
,

hJ
6
, hJ

7
, lJ

3
, nJ

3
, pJ

3
are assumed to be equal to zero; (ii) only the "rst axisymmetric

mode (n"0, m"1) is considered, i.e., hJ
6
, hJ

7
, nJ

3
, pJ

3
are assumed to be equal to

zero; (iii) only the "rst and the third (n"0, m"3) axisymmetric modes are
considered, i.e., hJ

7
, pJ

3
are assumed to be equal to zero; (iv) all the modes are

retained, i.e., all the seven (actually "ve for driven mode with m"1, as previously
discussed) d.o.f.s. are used. The results in Table 1 suggest that the axisymmetric
terms (n"0) give a softening contribution which counters the hardening
contribution of asymmetric terms (n'0). The contribution of the "rst
axisymmetric term is not su$cient to balance the hardening e!ect of asymmetric
terms, and the third axisymmetric term is needed to calculate the correct trend of
TABLE 1

<alues of coe.cient b, giving the trend of non-linearity, for four di+erent models.
Model 1: no axisymmetric modes; model 2: ,rst axisymmetric mode only; model 3: ,rst
and third axisymmetric modes; model 4: ,rst, third and ,fth axisymmetric modes

Model 1 Model 2 Model 3 Model 4

0)45 0)00883 !0)01226 !0)01294
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non-linearity. The "fth axisymmetric term seems to give a very small contribution,
showing that the convergence of the transverse displacement expansion is almost
reached when retaining two axisymmetric terms. Note that the foregoing comments
apply to single-mode response without excitation of other asymmetric modes or
presence of internal resonances.

3.3. RESULTS FROM THE COMPLETE MODEL

Figures 3 and 4 show the frequency-response relationship when all the "ve d.o.f.s
are active and indicate the stability of the solution for m"1; both the maximum,
Figure 3, and minimum, Figure 4, amplitude of each generalized co-ordinate during
the oscillation period are shown. The oscillations of some variables often have
a mean value di!erent from zero.

It is interesting to observe in Figures 3(a) and 4(a) that, as a consequence of the
appearance of the companion mode (B

1,n
(t)O0), only a small part of the solution is

stable near the resonant part (peak) of the response of the driven mode. The rest of
the stable response curve has an amplitude much smaller than that predicted
without the participation of companion mode. The amplitude of the companion
mode is shown in Figures 3(b) and 4(b) and has almost the same magnitude as the
stable response of the driven mode, excluding the small stable portion near the tip
of the curve in Figures 3(a) and 4(a). Figures 3(c}e) and 4(c}e) are of interest because
they show the behaviour of the axisymmetric modes, the e!ect of which on shell
response has been investigated in section 3.1. It is observed that Figures 3(d, e) and
4(d, e) are qualitatively similar, while Figures 3(c) and 4(c) have opposite signs. This
is a reason for the necessity of including both the "rst and third axisymmetric
modes in the expansion of the #exural displacement, as previously discussed. It is
also interesting to note that the axisymmetric modes oscillate with a mean value
signi"cantly di!erent from zero; this mean value has an opposite sign for the "rst
and the other axisymmetric modes.

The di!erence between a modal excitation and a point excitation has been found
to be negligible for the case under investigation; the frequency-response
relationship obtained with point excitation is almost coincident with the one given
in Figures 3 and 4. This result can easily be justi"ed by observing that the linear
frequencies of the axisymmetric modes are in this case very far from the linear
frequency of the driven mode. Therefore, the response of axisymmetric modes
under direct excitation at a frequency very far from their resonance is negligible.

The frequency-response relationship for the case m"2 is shown in Figure 5. It is
noted that results for the non-linear shell response in modes with m'1 are very
rare in the literature and their accuracy is uncertain. Comparison of Figures 3 and
5 shows that the response for m"2 displays a slightly increased softening non-
linearity with respect to m"1. Moreover, Figures 5(c) and (d) are similar to Figure
3(c); Figure 5(e) is similar to Figures 3(d) and (e). Therefore, the transition from one
type of response to the other is deferred to the successive odd axisymmetric mode in
the case of m"2. This result indicates that, for modes with two longitudinal
half-waves (m"2), the "fth axisymmetric mode is fundamental for predicting the



Figure 3. Frequency-response curve with companion mode participation, m"1. (a) Maximum of
A

1,n
(t)/h; (b) maximum of B

1,n
(t)/h; (c) maximum of A

1,0
(t)/h; (d) maximum of A

3,0
(t)/h; (e) maximum

of A
5,0

(t)/h. **, Stable solutions; } } } , unstable solutions.
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Figure 3. Continued.
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non-linear shell response with su$cient accuracy. In general, it is resonably
believed that, for the mth mode, all the axisymmetric modes with odd number of
axial half-waves up to 2m#1 are necessary for an accurate computation of the
shell response.

Figure 6 shows the response of the shell subjected to a modal excitation of "xed
frequency, u/u

1,n
"0)999, and increasing force amplitude. This "gure is important

because it shows that, even if for the case considered the softening behaviour is
particularly weak, important non-linear phenomena arise at a relatively small
vibration amplitude, namely 0)2 times the shell thickness h. In fact, Figure 6(a)
shows that the vibration amplitude increases very rapidly from 0)2 to 0)6 h with
a very modest force increment. After this point, an increase in the vibration
amplitude needs a large force increment. In particular, at the bifurcation point,
where the companion mode becomes active [see Figure 6(b)], there is a signi"cant
decrement of the vibration amplitude of the driven mode corresponding to a force
increment; however, energy is transferred to the companion mode, the amplitude of
which increases very quickly. These phenomena indicate that it is very restrictive to



Figure 4. Frequency-response curve with companion mode participation, m"1. (a) Minimum of
A

1,n
(t)/h; (b) minimum of B

1,n
(t)/h; (c) minimum of A

1,0
(t)/h; (d) minimum of A

3,0
(t)/h; (e) minimum of

A
5,0

(t)/h. **, Stable solutions; } } }, unstable solutions.
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Figure 4. Continued.
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study non-linear shell vibrations by considering only the backbone curve,
pertaining to free vibrations. After all, the backbone curve indicates only the trend
of non-linearity; in many cases, this is but minor phenomenon compared to other
interesting results associated with large-amplitude shell vibrations.

4. FLUID-FILLED SHELLS

A case presenting a much stronger non-linearity is the one for which stability has
been studied in Part I of the present study [11]. It is a circular cylindrical shell,
simply supported at the ends (N

x
"0), water-"lled, and having the following

characteristics: ¸/R"2, h/R"0)01, E"206]109 Pa, o"7850 kg/m3, o
F
"

1000 kg/m3 and l"0)3. In this case, no #uid #ow is considered, and the model of



Figure 5. Frequency-response curve with companion mode participation, m"2. (a) Maximum of
A

2,n
(t)/h; (b) maximum of B

2,n
(t)/h; (c) maximum of A

1,0
(t)/h; (d) maximum of A

3,0
(t)/h; (e) maximum

of A
5,0

(t)/h. **, Stable solutions; } } }, unstable solutions.
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Figure 5. Continued.
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PamKdoussis and Denise [11], used to model the #uid}structure interaction,
corresponds to a shell with open ends [15]. Here a linear potential #uid theory has
been used; the accuracy of this assumption has been investigated by Gonialves and
Batista [10] and Lakis and Laveau [16]. The mode considered is n"5, m"1, with
a damping ratio f

1,n
"0)01, a linear radian frequency u

1,n
"2n]106)69 rad/s and

an amplitude of the external modal excitation f
1,n

"0)03hu2
1,n

m
1
[2/(n¸)], where

m
1
is de"ned after equation (46a) in Part I of the present study [11] and is related to

the modal mass of the system.
The frequency-response relationship with companion mode participation is

given in Figure 7, which shows only the "rst two generalized co-ordinates. In fact,
all the generalized co-ordinates are qualitatively quite similar to the results
presented in Figure 3, with a large change in the scale of the abscissa. In this case,
the softening behaviour of the system is very signi"cant. In general, the
#uid}structure interaction of closed circular cylindrical shells containing dense



Figure 6. Frequency-response curve with companion mode participation, excitation frequency
u/u

1,n
"0)999 and m"1. (a) Maximum of A

1,n
(t)/h; (b) maximum of B

1,n
(t)/h.**, Stable solutions;

} } }, unstable solutions.
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#uids enhances the softening behaviour of the empty shell, as already observed in
references [4, 10]. Moreover, there appears an interesting peak in the stable
response of the driven and companion mode for u/u

1,n
:0)99. This is due to the

increased damping with respect to the case studied in Figure 3.
Figure 8 shows the time response of the system for excitation frequency

u/u
1,n

"0)99; it has been obtained by direct integration of the equations of motion,
performed by using an adaptive step-size Runge}Kutta integration scheme. This
"gure is important for studying the phase relationships among the "ve generalized
co-ordinates. Comparing Figures 8(a) and (b), a phase di!erence of n/2 between the
driven mode and the companion mode is found. Moreover, the frequency of the



Figure 7. Frequency-response curve with companion mode participation for the #uid-"lled shell,
m"1. (a) Maximum of A

1,n
(t)/h; (b) maximum of B

1,n
(t)/h. **, Stable solutions; } } }, unstable

solutions.
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axisymmetric modes, Figure 8(c}e), is twice that for the driven and companion
modes.

Another very interesting phenomenon is that no stable solutions exist for
0)9616(u/u

1,n
(0)9779. The PoincareH maps obtained for the "ve generalized

co-ordinates for u/u
1,n

"0)97 are given in Figure 9 and show a limit cycle; they
have been obtained by direct integration of the equations of motion, performed by
using an adaptive step-size Runge}Kutta integration scheme. These PoincareH maps
are obtained by using the computed points corresponding to the instant where the
force amplitude is maximum. The response in correspondence to the limit cycle
contains an amplitude modulation, as observed in Figure 10(a) which shows the
time response A

1,n
(t); the fundamental radian frequency of the modulation is

0)0152]u
1,n

rad/s. The limit cycle is an attractive monodimensional set embedded
in 10-dimensional phase space in the PoincareH map. The response is not chaotic as
observed in the frequency spectrum given in Figure 10(b). It shows that the single
frequency response obtained in the stable region is divided into several close



Figure 8. Time response of the #uid-"lled shell; u/u
1,n

"0)99 and f
1,n

"0)03hu2
1,n

m
1
[2/(n¸)].

(a) A
1,n

(t)/h; (b) B
1,n

(t)/h; (c) A
1,0

(t)/h; (d) A
3,0

(t)/h; (e) A
5,0

(t)/h.
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frequencies that give a beating phenomenon. The whole area where no stable
solutions exist is associated with beating phenomena that give modulations in the
oscillation amplitude. Note that the small portion of the spectrum, represented in



Figure 9. PoincareH maps for u/u
1,n

"0)97 and f
1,n

"0)03hu2
1,n

m
1
[2/(n¸)] showing limit-cycle

motion; #uid "lled shell, m"1. (a) First generalized co-ordinate; (b) second generalized co-ordinate;
(c) third generalized co-ordinate; (d) fourth generalized co-ordinate; (e) "fth generalized co-ordinate.
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Figure 10(b), contains most of the energy of the time signal, i.e., no harmonic
components are present at lower and higher frequencies. Analogous results are
obtained for the other generalized co-ordinates; in particular, the response of the



Figure 10. Response in correspondence to the limit cycle; u/u
1,n

"0)97 and f
1,n

"

0)03hu2
1,n

m
1
[2/(n¸)]. (a) Time history A

1,n
(t); (b) frequency analysis of A

1,n
(t); (c) time history A

1,0
(t);

(d) frequency analysis of A
1,0

(t).
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"rst axisymmetric mode A
1,0

(t) is shown in Figure 10(c) and its spectrum is given in
Figure 10(d). The spectrum shows that the axisymmetric mode has twice the
frequency of the asymmetric modes, as already observed in previous studies [4, 9].
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5. CONCLUSIONS

The present study indicates that it is limited to study non-linear shell vibrations
by considering only the backbone curve, pertaining to free vibrations, since this
only indicates the trend of non-linearity; in many cases, this is just one of the many
interesting phenomena associated with large-amplitude shell vibrations. Strong
non-linear phenomena arise at relatively small vibration amplitudes, and the
appearance of the companion mode at a vibration amplitude of around 0)6 times
the shell thickness complicates the shell response. Non-linear phenomena are
enhanced by #uid}structure interaction with dense, stationary #uids.

The trend of non-linearity is generally of softening type. It is reasonably believed
that all the axisymmetric modes with odd number of axial half-waves up to 2m#1,
where m is the number of axial half-waves of the mode investigated, are necessary
for an accurate computation of the shell response.

The present study could be improved by using a more re"ned non-linear shell
theory [9, 16, 17] instead of the non-linear Donnell shallow shell one, as discussed
in Part I of the present study where the theory is presented. However, the cases
studied satisfy the conditions of applicability of shallow-shell theory. It could be
interesting to verify the e!ect of additional asymmetric modes with a number of
circumferential waves a multiple of n and an odd number of longitudinal waves in
the expansion of the shell #exural displacement, as discussed by Ginsberg [7].
However, these are not expected to have the same fundamental e!ect on the trend
of non-linearity as the "rst and third axisymmetric modes, de"nitively investigated
here.
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